
Kegminder™
A project that displays the amount of beer left in a keg

By Mark Pardue, PhD and Kelly Haupt PE

Introduction

Being the owner of a Kegerator (a small refrigerator that holds a keg of

beer, outfitted with a tap system), my only problem was knowing when

the keg was almost empty. This system solves that problem for under

$150. My friend Kelly Haupt is a retired engineer who worked with

sensors for years on Navy projects involving testing small boats,

including those used by U.S. Special Forces. He is primarily responsible

for the ‘sensor’ part of this project. Special thanks to my wife Ann for

coming up with the name ‘Kegminder’ right off the top of her head.

Overall Design

Figure 1 shows the overall design for the Kegminder. There are two

major modules:

• Sensor Module that weighs the keg and is placed inside the

kegerator

• Computer & Display Module that is packed in an enclosure and is

placed outside the kegerator

The two modules are connected by 4-conductor telephone cable. You

should note that the way I ran the telephone cable was to have the ½

cable that was soldered to the sensor module stay completely inside

Figure 1. Kegminder Top-Level Design

the kegerator and the ½ cable that was connected to the headers on

the Arduino board (in the computer & display module) stay completely

outside the kegerator. That allows for easy maintenance, since you can

remove either the scale (sensor module) or the outside electronic

enclosure (containing the computer & display module), and not have to

pull any cables through the kegerator walls.

The ½ of the telephone cable that is connected to the Arduino board

needs to be solid conductor to allow easy insertion in the headers. Also

using solid conductor for the ½ of the cable soldered to the Load Cell

Amp makes it easier to solder.

The connections between all 3 of the telephone cables were made

using RJ-11 Male-to-Male connectors. *

*Some RJ-11 Male-to-Male connectors reverse the two pairs of wires connected to

them. This doesn’t have a big impact on telephone communication but can have

devastating effects on this project design. There are telephone line testers that

can tell you if the pairs have been reversed. In the case of my implementation,

BOTH of the connectors reversed the pairs, which happily resulted in providing the

correct connections.

*Something to note: This LCD display might be a bit ‘delicate.’ Some reviewers

have said it failed after a few days, and I had one of these fail as was putting it

in an enclosure.

Materials we Used

Purchased from www.sparkfun.com

Arduino SparkFun
RedBoard -
Programmed with
Arduino DEV-
13975

 $19.95

Load Cell Amplifier
HX711

$9.95

20 x 4 LCD with
Backpack Serial
Enabled 20x4 LCD -
Black on Green 5V
LCD-09568*

 $29.95

3-pin JST to
Breadboard
Jumper CAB-
13685

 $1.50

Combinator Card
SparkFun Load
Sensor Combinator
BOB-13878

$1.95

Jumper Wire - PTH
Black White PRT-
08672 (I soldered
both ends to
provide 5VDC to 2
connections)

 $0.95

Purchased from www.alliedelec.com

Enclosure
purchased from
Hammond
Manufacturing
1554J2GYCL
Polycarbonate;
UL945V; Gray;
6.3x3.5x2.4 In;
NEMA13; 1554
Series, with clear
cover and seal.
Larger than
required, others
were too small.

 $21.13

Purchased separately from Other Sources

Standard Digital
Bathroom Scale

 $19.95

Telephone wires
with RJ-11 plugs, 4-
wire solid
conductor (2 req’d)

 $5.00

RJ-11 Male-Male
connectors (2
req’d)

$3.00

9-15 VDC Power
Supply

$10.00

120V Switch
(allows for easy
on/off operation)

 $5.00

Extra Jumper Wires $3.00

Sheet Metal*
approx. 14” x 14”

 Scrap

*I used the side panel of an old PC and bent a lip to keep it from slipping off of the

scale. Digital scales are a bit too fragile to have a keg put directly on top of them,

so this seemed to distribute the pressure a bit more evenly.

Sensor Module

Digital Scales have 4 load cells, one situated at each corner of the scale,

and each load cell has 3 wires. On my scale, they were color coded:

• Red = Common

• White = +

• Black = -

No matter what the color coding on the wires, the largest resistance is

always the + to – wires. For our project, Kelly used a special

Combinator circuit board that helps simplify the wiring. The Sparkfun

circuit takes the 12 wires from the 4 load cells on the scale, and

connects them in a Wheatstone bridge circuit, resulting in only 5 output

wires.

You feed these 5 output wires to the Sparkfun Load Cell Amplifier

Circuit Board. On the Load Cell Amp, we soldered VCC and VDD

together since we were using 5VDC for both. That way, we only

needed to run 4 wires from the Amp to the Arduino board. We used

standard 4-wire solid telephone cable with an RJ-11 connector for that

run. As discussed above, an easy way to do this is to take a spare 4-

conductor solid wire telephone cable, cut it in half, and save the other

half for the connection to the Arduino board.

I taped the Combinator circuit board and the Load Cell Amp circuit

board to the bottom of the scale (see Figure 2) *. Since the 4 ‘feet’ of

the scale (where the load cells are located) provide a bit of vertical

clearance, the circuit boards are a protected.

*Disclaimer: I have no idea what prolonged temperatures of close to freezing will

have on the Load Cell Amp, but at least you don’t have to do any temperature

compensation circuitry, because the temperature should be constant inside the

kegerator.

Figure 2. Sensor Module

Computer & Display Module

The Computer & Display Module contains two circuit boards

• Arduino board

• LCD display

It also has 2 cables coming in:

• 4-conductor telephone cable from the Sensor Module

• 7-15 VDC power supply connection

I chose the smallest enclosure I could find to hold the two boards, and

it still had plenty of room. The key to the enclosure is to have a CLEAR

COVER so the LCD display shows through. The enclosure I chose also

had a rubber gasket to help with dust and moisture. Figure 3 shows the

enclosure and some of the connections.

Figure 3. Computer & Display Module

I used wire nuts to connect some of the leads from the telephone cable

(but soldered the wires together first, to prove a better physical

connection also. We needed a 5V connection to send out of the

telephone cable to the sensor module and another 5V connection to

the LCD display. Since there was only one 5V header, I used an old PC

connector with a white wire and a black wire (shown in Figure 3), which

terminated in a 2- connection female connector. By soldering the black

and white wires together, I was able to provide 2 connectors, both with

5VDC for the two required connections.

I used a small rotary tool to grind down the side of the enclosure for all

the two cables to enter the enclosure. *

There are slots in this particular enclosure to place circuit boards

vertically, but that wouldn’t work for this application. The LCD display

needs to be horizontal, and the Arduino circuit board isn’t the correct

size to be mounted vertically in the enclosure, so I had to ‘MacGyver’

the installation a bit. Only one mounting standoff matched the

mounting holds on the Arduino board, but by mounting it at an angle

the other side of the board it was secured in a stable manner. For the

LCD display, I used the two green cylinders which are cylindrical drywall

anchors, shown in Figure 3. I screwed these in through the bottom of

the enclosure. The front edge of the LCD display rests on the vertical

circuit board slots. Since the green sheet rock anchors are a bit shorter

than the vertical slots, the LCD angles downward at the bottom, which

is perfect for this application, since you don’t have to view the

enclosure from directly above to read the display.

*A ‘production’ version of this system would have a hole on the outside of the

enclosure where the barrel jack of the power supply would directly connect to the

flush-mounted board and would also incorporate a flush-mounted RJ-11 jack on

the outside of the enclosure.

Software

I programmed the Arduino board in the C language, using the functions

that the Arduino understands. The IDE and software libraries are all

identified, with instructions, on the Sparkfun site. The source code I

developed is at Appendix A and is (I think) fully commented. Two

libraries, from other contributors, are required:

• SoftwareSerial.h for the serial-enabled LCD*

• HX711.h for reading the Load Cell Amp output from the scale

I chose to keep the percent keg full value as an integer, since the

accuracy of this system doesn’t really support decimal places. The

accuracy of the system appears to be 5%, give or take. The raw scale

reading for full kegs and empty kegs varies about 5%. I took a number

of readings for several kegs over a period of time and used the average

of those readings in the software. In the source code, the sections I

used for getting those preliminary readings are commented as

‘Debugging’ so you can uncomment those sections and to your own

readings.

*If you use a standard LCD, you will need many more connections (soldered) than

the 3 that the JST connector provides and will need to use a different library file.

Appendix A: Source Code

/*

 Uses the SparkFun HX711 breakout board with a digital scale

 By: Mark Pardue

 Date: Aug 2, 2019

 License: This code is public domain but you buy me a beer if you use this and we meet

someday (Beerware license).

*/

#include "HX711.h"

#include <SoftwareSerial.h>

#define calibration_factor 7050.0 // This value was provided by the author of the HX711.h

 // library using the SparkFun_HX711_Calibration sketch

#define DOUT 3 // Data Out

#define CLK 2 // HX711 CLK

// These are the average of values obtained during multiple debugging runs

#define EMPTY 850 // Empty keg scale reading

#define FULL 1918 // Full keg scale reading

long range = FULL - EMPTY; // Used to calculate percent left

HX711 scale(DOUT, CLK); //Setup HX711 to scale

// Attach the serial enabld LCD's RX line to digital pin 11

SoftwareSerial LCD(10, 11); // Arduino SS_RX = pin 10 (unused), Arduino SS_TX = pin 11

void initDisplay();

void setup() {

 LCD.begin(9600); // set up serial port for 9600 baud

 delay(500); // wait for display to boot up

 scale.set_scale(calibration_factor);

 //Initialize Display

 initDisplay();

}

// This function clears the display and prints the first two 'boilerplate' lines

void initDisplay()

{

 // move cursor to beginning of first line

 LCD.write(254);

 LCD.write(128);

 // clear display by sending spaces

 LCD.write(" ");

 LCD.write(" ");

 LCD.write(" ");

 LCD.write(" ");

 // move cursor to beginning of first line

 LCD.write(254);

 LCD.write(128);

 LCD.write(" Kegminder v5 2019");

 LCD.write(" ");

 LCD.write(254);

 LCD.write(14);

 LCD.write(" M.Pardue/K.Haupt ");

}

void loop()

{

 long scaleValue; // Raw number from scale

 int perValue; // Percent left, no decimal places

 int bars; // Number of bars to display current percent left

 char valueText[9]; // Temporary string to convert numbers to display

 // Get the reading from the scale

 scaleValue = scale.get_units()*10;

 /*

 // For debugging: Uncomment this section and comment out section noted below

 // Display the scale's raw number

 ltoa(scaleValue, valueText, 10);

 LCD.write(valueText[0]);

 LCD.write(valueText[1]);

 LCD.write(valueText[2]);

 LCD.write(valueText[3]);

 */

 // For debugging: Comment this out if debugging to adjust display

 // Add 4 blanks to display if NOT debugging

 LCD.write(" ");

 // Check for hardware error

 if(scaleValue < 0)

 {

 scaleValue = 0;

 }

 // Calculate percent

 perValue = ((scaleValue - EMPTY) * 100) / range;

 //Make sure numbers between 0 and 100

 if(perValue > 100)

 {

 perValue = 100;

 }

 else

 {

 if(perValue < 0)

 {

 perValue = 0;

 }

 }

 // Convert percent to string

 ltoa(perValue, valueText, 10);

 // Add blanks to center percent number

 LCD.write(" ");

 //Figure out how many digits to write

 if(perValue < 10) // Single digit

 {

 LCD.write(" ");

 LCD.write(valueText[0]);

 }

 else

 {

 if(perValue < 100) // 2 digits

 {

 LCD.write(" ");

 LCD.write(valueText[0]);

 LCD.write(valueText[1]);

 }

 else

 {

 if(perValue == 100) // 3 digits

 {

 LCD.write(valueText[0]);

 LCD.write(valueText[1]);

 LCD.write(valueText[2]);

 }

 }

 }

 // Put the percent sign on the end

 LCD.write("%");

 // Finish the line

 LCD.write(" ");

 // To get bars on display

 // How many bars on the bottom row?

 bars = perValue / 5; // 20 characters on the display = 100%

 if(bars > 0)

 {

 for (int i = 1; i <= bars; ++i)

 {

 LCD.write(0xFF);

 }

 }

 delay(5000); // Wait 5 seconds then refresh entire display

 initDisplay();

}

